sales@prom-elec.com

Honeywell

Thin Film Platinum RTDs HEL-700 Series

Datasheet

Thin Film Platinum RTDs

The HEL-700 Series Thin Film Platinum RTDs (Resistance Temperature Detectors) are designed to monitor or control critical temperatures in industrial applications. They provide a linear change in resistance versus temperature, combining high linearity, stability, accuracy, and wide temperature range in a small, fast-response package.

The HEL-700 Series is designed to measure temperatures from -75 °C to 540 °C [-100 °F to 1000 °F] with high accuracy. These fully-assembled elements are ready-to-use in probe assemblies, without the need for fragile splices to extension leads.

These products are manufactured using a thin layer of platinum deposited on an alumina substrate and are laser trimmed to a resistance interchangeability of a standard $\pm 0.2\%$ (± 0.5 °C accuracy) or optional $\pm 0.1\%$ (± 0.3 °C accuracy). The sensor chip is then glassed, wired and potted or ceramic fired to result in a cylindrical alumina package with either TFE Teflon[®]- or fiberglass-insulated lead wires.

Key Features

- Wide temperature range
- Interchangeable
- Accurate
- Linear resistance vs temperature
- Fast response
- Laser trimmed
- Ceramic case material
- TFE Teflon® or fiberglass leadwires
- Multiple small sizes
- Ready-to-use, fully assembled elements

Potential Applications

Temperature sensing for monitoring, compensation and regulation in:

INDUSTRIAL

- HVAC equipment
- Instrument and probe assemblies
- Process control
- Motor windings and bearings
- Battery packs
- Environmental chambers
- Ovens and kilns
- Drill holes in large objects

MEDICAL

Autoclaves

AEROSPACE/DEFENSE

- Aircraft
- Space vehicles

Table 1. Specifications

Characteristic	Condition	Parameter
Alpha: $R_0 = 1000 \Omega$ $R_0 = 100 \Omega$	0°C	0.00375 Ω/Ω/°C 0.00385 Ω/Ω/°C
Temperature range: TFE Teflon fiberglass	_	-70 °C to 260 °C [-94 °F to 500 °F] -75 °C to 540 °C [-100 °F to 1000 °F]
Temperature accuracy: $R_0 \pm 0.2\%$ trim (standard) $R_0 \pm 0.1\%$ trim (optional)	_	$\pm 0.5^{\circ}$ C or 0.8% of temperature, whichever is greater $\pm 0.3^{\circ}$ C or 0.6% of temperature, whichever is greater
Base resistance and interchangeability, $R_0 \pm \Delta R_0$: $R_0 \pm 0.2\%$ trim (standard) $R_0 \pm 0.1\%$ trim (optional)	0°C	1000 Ω ±2 Ω 1000 Ω ±1 Ω
Linearity: -40 °C to 125 °C -75 °C to 540 °C	—	±0.1% of full scale ±2.0% of full scale
Time constant	water at 3 ft/s still water	<0.5 s for 0.086 in O.D. <1.0 s for 0.086 in O.D.
Operating current	_	2 mA max. minimal self heating errors of 1 °C; 1 mA recommended
Stability	occupied environments	<0.25 °C /year; 0.05 °C /5 years
Self heating	—	<15 mW/°C typ. for 0.086 in O.D.
Insulation resistance	50 Vdc at 25 °C	>50 ΜΩ
Construction/material: case Teflon [®] -insulated leads fiberglass-insulated leads	_	high purity alumina nickel-coated stranded copper, epoxy potting nickel-coated stranded copper, ceramic potting

Table 2. Constant Values ($\beta = 0$ and C = 0 for T > 0 °C)

Constant	1000 Ω	100 Ω	Functional Behavior	
Alpha α (°C-1)	0.00375 ±0.000029	0.003850 ±0.000010	$B_{r} = B_{0}(1 + AT + BT^{2} - 100CT^{3} + CT^{4})$	
Delta δ (°C)	1.605 ±0.009	1.4999 ±0.007		
Betaβ(°C)	0.16	0.10863	Where: $B_r = \text{Resistance (O) at temperature T (°C)}$	
A (°C-1)	3.81 x 10⁻³	3.908 x 10 ⁻³	$R_0 = \text{Resistance } (\Omega) \text{ at } 0 \text{ °C}$	
B (°C-2)	-6.02 x 10 ⁻⁷	-5.775 x 10 ⁻⁷	T = Temperature (°C) A = $\alpha + \alpha \delta$ B = - $\alpha \delta$ C _{T α} = - $\alpha \beta$	
C (°C-4)	-6.0 x 10 ⁻¹²	-4.183 x 10 ⁻¹²	$100 100^2 100^4$	

CAUTION PRODUCT DAMAGE

- Ensure proper ESD (Electrostatic Discharge) precautions are followed when handling this product.
- Failure to comply with these instructions may result in product damage.

	Tolerance				
Temperature (°C)	Standard Trim (±0.2%)		Optional Trim (±0.1%)		
	±ΔR¹ (Ω)	±∆T (°C)	±ΔR¹ (Ω)	±∆T (°C)	
-100	2.9	0.8	2.4	0.6	
0	2.0	0.5	1.0	0.3	
100	2.9	0.8	2.2	0.6	
200	5.6	1.6	4.3	1.2	
300	8.2	2.4	6.2	1.8	
400	11.0	3.2	8.3	2.5	
500	12.5	4.0	9.6	3.0	
600	15.1	4.8	10.4	3.3	

Table 3. Accuracy vs Temperature

Table 4. NIST Calibration

Temperature (°C)	Standard Temperature Point (±ΔΤ (°C))				
	1	2	3		
-100	0.5	0.27	0.15		
0	0.03	0.03	0.03		
100	0.4	0.11	0.07		
200	0.8	0.02	0.08		
300	1.2	0.33	6.2		
400	1.6	0.5	8.3		
500	2.0	0.8	9.6		
600	2.6	1.2	10.4		

¹NIST-traceable calibration provides resistance readings at 1, 2 or 3 standard temperature points to yield a resistance versus temperature curve with 10x better accuracy.

11000 Ω RTD. Divide Δ by 10 for 100 Ω RTD.

Figure 1. Resistance vs Temperature

Figure 2. Nomenclature and Ordering Guide

For example, a **HEL-705-U-0-12-C1** part number defines an HEL-700 Series Thin Film RTD with two, 28 gauge TFE Teflon[®] insulted leadwires, an alpha of 1000 Ω : 0.00375 $\Omega/\Omega/^{\circ}$ C, a standard ±0.2% trim resistance, 12 inch leadwires, and a NIST calibration report at 0 °C.

Figure 3. All Available Standard Configurations

Figure 4. Dimensional Drawings (For reference only: mm [in].)

HEL-705

HEL-707

HEL-711, HEL-712

HEL-716, HEL-717

Wheatstone Bridge 2-Wire Interface

Adjustable Point (Comparator) Interface

sales@prom-elec.com